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Abstract. The semi-solid state of metallic alloys is characterized by the coexistence of solid and
liquid phases at thermal equilibrium. The rheology of such diphasic materials not only depends on
the solid fraction, but also is highly correlated with the degree of aggregation of the solid particles.
The viscosity η of a diphasic (30% and 40% solid fractions) Ag–Cu alloy was measured using a
contactless method: at 923 ◦C, we get η = (2 ± 1) × 103 Pa s for a solid fraction of 30% and
η = (2 ± 1) × 104 Pa s for a solid fraction of 40%. The solid, copper-rich phase, is dispersed
into globules of about 50 µm in size. The large value of η suggests that these particles form a
random interconnected network. This type of microstructure is likely to give rise to the thixotropic
rheological properties of many semi-solid materials. The structure and therefore the viscosity are
sensitive to the applied shear rate γ̇ . Two distinct regimes of aggregation, depending on the actual
value of the shear rate, are discussed: ‘compact clusters’ versus ‘random network’. We calculate
the characteristic size of the compact clusters and discuss the parameters governing the state of
aggregation.

1. The semi-solid state

When an alloy is brought between the liquidus and solidus and reaches approximate thermal
equilibrium, it is of course in a diphasic state with some solid fraction φs determined by the
lever rule. This solid fraction may be more or less finely dispersed depending on previous
mechanical stirring and heat treatment. This is the semi-solid state. A simple example is
provided by the mushy zone in solidification processes: a highly viscous mixture of more or
less broken dendrites coexisting with the interdendritic melt.

Semi-solids lend themselves to various important practical applications, e.g.

(i) the development, after complete solidification, of appropriate microstructures leading to
specific material properties; and

(ii) the casting of thixotropic slurries (rheocasting) improving the forming processes for
metals [1] (‘thixotropy’ is non-linear and non-reversible shear thinning, due to shear-
induced structural modifications).

Clearly, the physical properties—and the physics—of semi-solids are related to those of
suspensions and of granular media. The viscosity, η, for instance is expected to diverge
at, or near, random loose packing and/or the onset of rigidity percolation [2]. Near walls, plug
flows [3] or slip bands [4] may appear, resulting in lower apparent viscosity.
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Semi-solids are special, however, in that the liquid and solid phases are chemically
related: strictly, at equilibrium, their chemical potentials are equal, and one phase can locally
melt, or freeze, into the other. This will lead to specific microscopic modes of aggregation
(agglomeration) of solid particles [1], related to liquid-phase sintering, and different from
sticking mechanisms in, say, colloidal suspensions. In both cases however, aggregation will
generally result in divergence (or at least rapid increase) of the viscosity, at some volume solid
fraction value�s

g . The state of aggregation itself, i.e. the semi-solid microstructure, is difficult
to predict and describe: the number density and compactness of the clusters will depend on
solid fraction, shear strain, temperature, and size and shape of individual solid particles.

In this paper we are interested in the viscosity of metallic alloys in the semi-solid state as
related to their microstructure: the central question is that of whether they have suspension-like
behaviour described by hard-core models (see e.g. [5]) or a more complex behaviour affected
by the interaction between the particles. Experimental results obtained on semi-solid alloys
exhibit large viscosities at low shear rates, even at relatively low solid fractions (see for instance
reference [6]). As a consequence, interactions between solid particles have to be taken into
account. Two limiting cases are presented and discussed: (i) formation of ‘compact’ clusters;
and (ii) a random loose network. The aim of this paper is to determine the physical parameters
controlling the steady microstructure under shear.

In section 2, we describe the development of a silver–copper semi-solid sample, and
report viscosity measurements on that sample. In section 3, we calculate the limiting size,
under external shear, of compact globular clusters. Two basic cluster-growth scenarios are
considered in section 4, resulting in compact or open, colloid-like clusters.

2. Elaboration of an Ag–Cu semi-solid sample and contactless viscosity measurements

Our gas–film levitation viscosimeter has been described and demonstrated in detail elsewhere
[7, 8]. Its main advantages are:

(i) no walls, and very reduced heterogeneous nucleation, which allows measurements on
substantially supercooled liquids;

(ii) a large range of accessible temperatures (20–2500 ◦C) and viscosities (10−3–105 Pa s);
(iii) relatively modest shear rates (�1 s−1).

Our new method is based on the hydrodynamics of a deformed viscous drop [9]. Dep-
ending on the characteristic viscosities, the set-up can be operated in the oscillatory regime
[8, 10] or in the aperiodic regime [7]. When the radius of the drop R is larger than the critical
radius (Rc = η2/(σρ), η viscosity, σ surface tension, and ρ density), the regime will be
oscillating. When the drop radius is smaller than Rc, the regime will be aperiodic with a
characteristic time constant for deformation mode � [9] of

τ� = 2(2�2 + 4� + 3)

�(� + 2)(2� + 1)

ηR

σ
(1)

where � is the deformation mode index (� � 2). The relaxation curve is then an exponential
with the characteristic time constant τ�. Here we are only interested in the viscous case and
the � = 2 mode (the drop initially compressed along the vertical axis). So, the characteristic
time constant of the aperiodic relaxation, after imposed deformation, depends linearly on the
viscosity. We have

η = 40

38

σ

R
τ2. (2)
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The method has been successfully tested [7] on a silicate glass: ‘AR-Glas’, and oxide
glass mixtures (SiO2–Na2O–B2O3) between 800 and 1200 ◦C for viscosities ranging between
102 and 105 Pa s.

Our silver–copper samples, drops with equatorial radius R ≈ 4 mm and composition
28.8 wt% silver, corresponding to a solid fraction �s = 30% at 923 ◦C (a temperature
corresponding to liquid–solid iso-density in order to avoid sedimentation effects), were
thermomechanically pre-treated in order to obtain a reproducible globularized microstructure
with globule size of order 50 µm (see figure 1(a)). Here are the successive steps of this
thermomechanical treatment:

• First, the sample is developed in a graphite crucible and solidified by quenching (100 ◦C
per minute). The microstructure is then dendritic with Cu-rich dendrites.

• Second, the ingot is rolled to a high rolling strain (more than 50%).
• The main consequence of this mechanical preparation is to induce re-crystallization

leading to the formation of globular microstructure (characteristic radius 50 µm) during
the last step of the treatment: partial remelting at 923 ◦C.

(a) (b)

Figure 1. Globularized Cu–28.8 wt% Ag after mechanical treatment and quenching: (a) oil
quenching (magnification ×80); (b) after completing the viscosity measurement and air quenching
(magnification ×100). Note that quenching alters the apparent solid fraction.

Remarks

(a) In figure 1(a), the sample was quenched in oil with a cooling rate of order 500 ◦C min−1 after
partial remelting at 923 ◦C for 15 minutes, so we can consider the recorded characteristic
size in the picture—about 100 µm—to represent the actual solid particle size at 923 ◦C.
Figure 1(b) shows the microstructure after completing the viscosity measurement: the
characteristic size is of the same order as in figure 1(a), so we conclude that there is no
significant change in the microstructure of our sample over the duration of the viscosity
measurement (a few minutes). This observation leads us to make the further (and stronger)
assumption that, over this same measurement duration, the particle interconnectivity itself
(see below, at the end of this section) does not change, which allows us to disregard
any rheofluidization effects due to the measurement itself (at least as long as the initial
deformation remains relatively small).
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(b) The micrographies represent two-dimensional sections of the sample and so, at the
moment, we are not able to correlate the apparent agglomeration with the actual agglom-
eration of the particles in three dimensions.

We take the characteristic shear rate to be

γ̇ = 1

R

�δ

τ

where R is the drop radius, τ is the relaxation time extracted from figure 2, and �δ is the
effective range of drop-deformation relaxation (vertical axis in figure 2). We thus estimate:
γ̇ ≈ 10−2 s−1. The temperature inhomogeneity is less than a few degrees between the top
(north pole) and the centre of the drop. The microstructure of our sample after the viscosity
measurement is presented in figure 1(b).

0

5

10

15

20

25

0 10 20 30 40 50
time (s)

D
ro

p 
fl

at
te

ni
ng

 (
a 

u
)

sP as 3105.22.9 ��� ��

1210 ��

� s��

Figure 2. A typical relaxation curve for Cu–28.8 wt% Ag in the semi-solid state. Temperature of
the experiment: 923 ◦C; volumic solid fraction: 30%. The useful part of the curve is beyond the
vertical dotted line (see the text following equation (3)).

The extracted relaxation time constant is τ ≈ 10 s, which yields via equation (2) a viscosity
(averaged over five independent measurements) of

η = (2 ± 1)× 103 Pa s. (3)

The 50% uncertainty is due to the actual shape of the relaxation curve as shown in figure 2.
At first (≈1 s) the relaxation is extremely fast (this is a purely mechanical effect associated
with the rapid withdrawal of a liquid-rich zone at the pole of the drop on removing vertical
compression).

We have also performed viscosity measurements at solid fractions of 20 and 40%. At
�s = 40%, we get: η ≈ 2 × 104 Pa s (γ̇ ≈ 10−3 s−1; of course, with our technique, γ̇ cannot
be independently varied as it could, e.g., in a Couette rheometer). At�s = 20%, the relaxation
is too fast and we are unable to measure any viscosity lower than 10 Pa s; this means that the
microstructure is much less interconnected and the individual particles more independent of
one another (see below).

We note that, at �s = 30% and γ̇ = 10−2 s−1, previous viscosity measurements on
Sn–15 wt% Pb [6] yield η ≈ 5 × 104 Pa s—that is, more than an order of magnitude higher
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than our result, equation (3). This is, in all probability, due to the different mechanical properties
of the solid phase, resulting in easier brittle rupture in Ag–Cu, and therefore in weaker particle
interconnectivity (see section 3).

The present gas–film levitation viscosity measurements, which we believe are the first
of this kind, on the viscosity of a metallic alloy in the semi-solid state, allow us to make the
following statements. This dramatic increase in viscosity, due to particle aggregation, is well
known in colloidal suspensions [21, 23] as well as in oxide and metallic melts [25]. The
elemental structural units (globules) are not like independent solid particles in a suspension.
Rather, they are massively aggregated and this leads to the very high viscosity given by
equation (3): η is about five orders of magnitude larger than what would be obtained by
calculation for a simple suspension with the same solid fraction. In the following sections, we
shall discuss, phenomenologically, simple agglomeration mechanisms which might explain
these wide structural and rheological gaps.

3. Shear-limited aggregation: limiting size of a globular cluster

In this section we shall give an evaluation of the maximum size of a cluster of solid particles
when agglomeration is counteracted by shear. We shall make a number of simplifying, but not
necessarily very restrictive, assumptions:

(i) The individual solid particles are, as explained earlier, preformed globular crystals: we
take them to be spherical and monodispersed.

(ii) When subjected to a modest shear stress, these particles will agglomerate as we shall
explain next. We assume that there is enough time for structural rearrangements to result
in clusters which we again take to be spherical and monodispersed, though not in general
of good crystalline quality.

(iii) These globular lumps grow over time by shear-induced cluster–cluster aggregation until
they reach their maximum sizeRmax = f (γ̇ ) compatible with the shear-rate field γ̇ (which
we take to be uniform on the scale of Rmax ; this assumption is crude but not critical). Any
cluster larger than Rmax would be torn apart by the shear stress.

Two spherical objects with radius R, directed towards one another in a shear flow with
shear rate γ̇ , will meet and roll over one another in a time τ0 given, on average, by (see
e.g. reference [11])

τ0 = 2.5γ̇−1. (4)

For modest shear rates, τ0 is relatively long, which provides the two spheres (that are
in close contact for the time τ0) with the opportunity to sample favourable relative crystallo-
graphic orientations over their surfaces. We then assume that during the time τ0 they will
form fairly low-energy grain boundaries: these will grow rapidly, leading to a new gener-
ation of fewer but larger clusters. (We note, however, that, during this coarsening process,
structural rearrangements over larger and larger distances progressively become less efficient
at maintaining the spherical cluster shape and, hence, coarsening the self-similarity.)

We now use a result that was derived in reference [12] concerning the growth rate of a
‘neck’ between two solid spherical particles with equal radii R; see figure 3. If x is the neck
radius (the radius of the grain boundary circular disc), then at time t after a particle encounter,
x is given by

t = R3

[
m(CL − CS)

4D

�S∗

σSL

]
f

(
x

R

)
= R3Af

(
x

R

)
(5)
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Figure 3. Neck growth between two solid particles.

where f (x/R) ≈ (x/R)5/5 as long as x/R 	 1, and m is the liquidus slope, CL and CS

are the solute concentrations at the liquidus and solidus, D is the solute diffusivity, σSL is
the solid–liquid surface tension, and �S∗ is a weighted entropy change per unit volume as
defined in [12]. In fact, neck growth may start early or late on the scale of the ‘mating’ time τ0

(equation (4)), depending on whether or not favourable crystallographic orientations are found
for which the grain boundary surface energy σb is substantially smaller than σSL. However,
if it starts too late, the neck will be fragile and the two ‘particles’ (clusters) will break apart.
In practice therefore, the scale for the relevant time of neck growth is given by τ0. If the
corresponding neck size x, given by equation (5), is large enough to withstand hydrodynamic
shear stress, aggregation will succeed and lead to cluster coarsening. It is then clear that the
limiting cluster sizeRmax , for a shear rate γ̇ , is given (together with neck size x0 corresponding
to that ‘maximal’ cluster) by the following two coupled equations:

τ = 2.5γ̇−1 = R3
maxA

1

5

(
x0

Rmax

)5

(6)

1

2
MV 2 = 1

2
ρ

4

3
πR3(γ̇ Rmax)

2 = πx2
0 �σ. (7)

In the latter equation, we equate the differential kinetic energy available for dis-
agglomeration to the rupture energy of the virtual cluster that would be formed by aggreg-
ation of the two ‘colliding’ spherical objects of radius Rmax (see point (iii) in the following
discussion). M and ρ are the effective mass and the density of these objects (taking backflow
into account) and V ≈ γ̇ R is their relative velocity in the local shear field. �σ = 2σSL − σb
is the energy barrier per unit grain boundary area for boundary rupture—that is, formation of
two solid–liquid interfaces replacing the solid–solid interface between two particles.

Combination of equation (6) and equation (7) leads to the following maximum values for
x and R:

Rmax =
(

25

2A

)2/21

γ̇−4/7

(
3�σ

2ρ

)5/21

(8)

x0 =
(

25

2A

)5/21

γ̇−9/21

(
3�σ

2ρ

)2/21

. (9)
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Rmax decreases with shear rate roughly as γ̇−1/2 and varies with an extremely weak
dependence on the thermodynamic parameters: in particular, Rmax depends on �σ with an
exponent −5/21 ≈ −1/4; the numerical prefactor is such that, for a (rather strong) shear
rate of γ̇ = 103 s−1, Rmax and x0 are respectively close to 100 µm and 10 µm. It is
interesting to note at this point that globular microstructures in a number of different metallic
alloys have characteristic sizes of order 100 µm for shear rates of several hundred s−1 (see
e.g. references [6, 13]).

3.1. Discussion

(i) Equation (8) could be seen as a lower limit for Rmax , given by the energetic cost of the
boundary rupture of two clusters. An upper limit could be estimated as the energy of the
fragile rupture of the neck between two particles after plastic deformation, giving a value a
few times larger. The scenario usually considered [14] for dendritic-arm fracture consists
in a localized plastification leading to the formation of sub-grain boundaries which are
then wetted by the liquid.

(ii) Equations (8) and (9) provide us with two pieces of information: Rmax and x0, the
characteristic neck size just before the disagglomeration threshold is reached.

On the other hand, at early stages (cluster ‘generations’) of the agglomeration process,
R is smaller (or much smaller if the initial particles are themselves small) thanRmax . Thus,
it follows from equation (5) that the relative neck size is larger for smaller clusters: at
this stage sintering is quite efficient and the clusters are robust (albeit polycrystalline).
Whereas the neck growth is diffusion limited and follows a Gibbs–Thomson-like kinetic
form (see equation (5)), the cluster growth itself is governed by the collision frequency as
long as R � Rmax , leading to an exponential growth (see section 4): thus cluster growth
is much faster than classical, diffusion-limited coalescence, whereby R ≈ t1/3 just as for
Lifshitz–Slyozov coarsening [15].

(iii) It must be stressed, however, that the results above (and equation (4) in particular) were
derived under the binary-collision assumption. In fact, since we are interested in practice
in solid fractions that are no less than 20%, multi-particle collisions are frequent, with two
antagonistic consequences: (a) a tendency for faster growth; and (b) less robust sintering,
since the crystallographic orientation sampling, as mentioned just after equation (4), will
be hindered by hard-core effects. From the discussion in (ii), we expect trend (a) to
dominate for smaller clusters. As growth proceeds, the actual clusters become less and less
homogeneously compact, and change from pseudo-spherical to dumb-bell shaped. Note
that this same argument provides us with a semi-quantitative justification for our energetic
balance (equation (7)): due to particle crowding (already occurring at intermediate solid
fractions), the available kinetic energy is readily converted into disagglomeration energy
(πx2

0 �σ ) when R ≈ Rmax .
(iv) A comparison is made in table 1 between our equation (8) and experimental 2D micro-

graphies for Al–Zn–Mg [13] and Sn–Pb [12], and 3D micrographies for Al–Si [20].
Rmax is found to be of the correct order of magnitude for these alloys at high shear
rate (γ̇ = 100–1000 s−1). For Sn–Pb no micrographies are available in the literature.
Equation (8) is obviously not meant to describe the microstructure of our Ag–Cu levitated
droplet for a γ̇ = 10−2 s−1 shear rate: in our experiment on Ag–Cu drops, as described
in section 2, the individual solid globules are rather large (R ≈ 50 µm), and are probably
already interconnected from the start due to the thermomechanical history of the sample.
In fact, we consider a random-network scenario to be the only way to explain the result
reported in section 2: a semi-solid whose viscosity is at least five orders of magnitude
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Table 1. Thermodynamical parameters and final sizes of clusters: comparison between results
from calculations (equation (8)) and micrographies for Al–6Zn–3Mg [13], Al–6.5 wt% Si [20],
and Sn–15 wt% Pb [12].

Al–6Zn–3Mg Al–6.5 wt% Si Sn–15 wt% Pb Cu–28.8 wt% Ag

m (K/%) 2.9 [16] 6.7 [16] 3.3 [17] 3.3 [16]
CL − CS (wt% K−1) 12 [16] 5.5 [16] 23 [17] 28.4 [16]
D (10−9 m2 s−1) 6.2 [18] 5 [18] 4 [18] 4 [18]
σSL (J m−2) 0.16 [17] 0.17 [17] 0.13 [19] 0.23 [19]
�S∗ (105 J K−1 m−3) 6.8 [17] 8.6 [17] 17 [17] 1.7 [17]
ρ (kg m−3) 2580 [16] 2360 [16] 7500 [16] 8500 [16]
γ̇ (s−1) 610 [13] 900 [20] 100 [6] 100a

�σ (J m−2) 0.33 [17] 0.34 [17] 0.26 [19] 0.43 [19]

Apparent agglomerate 100–300 [13] 200–400 [20] — —
radius (µm)
Rmax (µm) 130 100 220 320
(equation (8))

a This value of the shear rate γ̇ is given simply for comparison, and does not correspond to any actual measurement.

larger than that of a typical liquid metal (�10−2 Pa s), at a solid fraction of ‘only’ 30%.
We are currently preparing quenching and visualization procedures, aiming to display
this interconnected microstructure. In fact, as we have already pointed out, when clusters
grow to larger sizes, compactifying rearrangements require longer times τr . When τr
becomes comparable to, or larger than, the cluster–cluster sticking collision time, τcoll ,
an interconnected random network necessarily sets in—with a concomitant rapid increase
in viscosity (gelation). This point is central; although calculating τr is no easy task, it is
clear that eventually the gel transition will put an end to the cluster-growth mechanism
discussed above: instead of equation (8), Rmax , or rather, in that case, the characteristic
size of the microstructure will level off as shear rate decreases (except when �s 	 1),
at a value of order 100 µm, in agreement with our Ag–Cu micrographies. The gel point
will occur at larger (lower) solid fraction for smaller (larger) individual solid particles.
For example, in a refined (finely dispersed) aluminium alloy, each cluster ‘blob’ is more
compact; it is made up of a larger number of single particles, and gelation will accordingly
start at larger solid fraction. We now consider this point in somewhat more detail.

4. Fractal versus compact clusters

The viscosity measurements reported in section 2 gave evidence for strong interactions between
individual solid particles. The micrographies presented in figure 1 led us to make the assump-
tion of a fractal-like structure: gelation would then occur when a fractal cluster manages to
reach the size of the sample.

For individual spherical particles of size a and number density n, we may write the volume
density, i.e. solid fraction, as

�s = 4

3
πa3n. (10)

The linear size of a cluster of fractal dimension d containing N particles is

R = aN1/d . (11)

For compact clusters, d is the space dimension: d = 3; for fractal clusters growing by
cluster diffusion-limited aggregation, d lies between 1.7 and 1.9 for colloids (see for example
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reference [21]). The number density and volume fraction for such clusters are n/N and
(n/N)(4/3)πa3N3/d = �sN

(3−d)/d , respectively. For compact clusters we naturally find the
volume fraction to be just�s whatever the cluster size; for fractal clusters where d < 3, gel will
start forming when the cluster fraction reaches unity—that is to say, when percolation occurs.
We now examine the rate at which cluster growth proceeds, before Rmax (see section 3) or the
gelation onset is reached. In shear flow, the classical Smoluchowski cluster–cluster collision
frequency (again for spherical objects) is given by: (8/π)�sN

(3−d)/d γ̇ . Recall that, for objects
larger than a few micrometres, Brownian motion can be neglected in practice and collisions
are essentially shear induced. The rate of cluster-size increase is therefore given by

Ṅ = N
8

π
�sN

(3−d)/d γ̇ ≈ 2.5γ̇ �sN
3/d . (12)

For compact clusters (d = 3), the growth is therefore exponential with an exponent
proportional to the product γ̇ �s ; but recall that it saturates at Rmax . For fractal clusters
(d � 3), equation (12) once integrated transforms into

N =
[

constant − 2.5

(
3 − d

d

)
(γ̇�s)t

]−d/(3−d)
(13)

with saturation for the cluster volume fraction ≈1, and the constant of order 1 (since N = 1
at t = 0).

Exact self-similarity, as associated with fractals, is not postulated here, but an effective
exponent d as defined in equation (11) will still characterize the compactness of the network,
whether truly fractal or not. Depending on γ̇ and �s , d can range between 1.7 (colloidal
fractals resulting from diffusion-limited aggregation) and 3 (compact clusters). Gelation, or
percolation of the fractal-like network, must then be considered in the plane (�s, γ̇ ). At
a given solid fraction, gelation will occur as γ̇ decreases whereas, at a given shear rate, the
percolation of a three-dimensional network (gelation) will begin as �s increases.

When gelation occurs at a large solid fraction (�g
s � 50%) at a given shear rate, we

may consider in practice that the viscosity increase at �s � �s
g is governed by the small

available free volume between the blobs and, therefore, by Krieger’s empirical law for dense
suspensions [5]:

η = η0

(
1 − �s

�
g
s

)−k
k ≈ 2.5�g

s . (14)

In that regime, as we have also suggested elsewhere [22], the shear-rate onset for shear
thinning should decrease, as �s → �

g
s , roughly as τ−1

β , an inverse β-relaxation time in the
suspension. We will not spend time here on the difficult question of the history-dependent
modifications in structure and viscosity (hysteresis in shear strain as a function of shear stress)
that may be found in thixotropic materials. We simply note that jumps in applied shear [12]
may lead to some understanding of agglomeration and disagglomeration processes.

Conversely, when gelation occurs at intermediate solid fractions (�g
s � 30%), because τr

rapidly surpasses τcoll as R increases, we expect the clusters to be ‘open’ rather than compact,
and the microstructure to be ‘branched ’ or colloid-like rather than globular. Viscosity should
then increase as �s → �

g
s according to the percolation law [11]

η = η0

(
1 − �s

�
g
s

)−s
s ≈ 0.7 for colloids [21]. (15)

In that case, �g
s marks the earlier onset of an ‘infinite’ interconnected network of single

solid particles throughout the sample. Of course, even above �g
s , viscosity may be large

but finite, owing to shear-induced defects: re-dissolved grain boundaries, acting as ‘broken
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bonds’, will allow some creep motion. As shown in reference [13], the stable grain boundaries
are those where intergrain relative crystallographic orientations are sufficiently energetically
favourable that σb < 2σSL, where σb is the boundary energy and σSL the interfacial solid–liquid
surface tension. In different physico-chemical contexts, these two asymptotic regimes (with
material-dependent exponents k and s) may be found in silica gels or colloidal suspensions [21].

Remarks

(i) In equation (15), for globular non-compact clusters, the value of s is not known but is
probably close to 2.5.

(ii) In equations (14) and (15), in order to take into account rheofluidization, �s has to be
taken as an effective volume fraction (including some entrapped liquid) [23].

The fractal scenario is clearly a better fit to colloids. In diphasic alloys the compact,
globular route probably provides a reasonable description of cluster growth as long as the cluster
size R is substantially smaller than Rmax , as we saw in section 3. But, when R ≈ Rmax—or
when the shear rate (γ̇ ) is relatively small, such that the ‘equilibrium’ Rmax (equation (8))
would be too large for compactifying rearrangements to take place—then the late stages of
growth would probably be characterized by a more ‘open’ microstructure, perhaps with some
short filamentary or ribbon-like segments. The latter will, eventually, form an interconnected
(if not truly fractal) random structure at the gel point. In the case of the Ag–Cu diphasic drops
discussed in section 2, we believe that gelation occurs right away in view of the large size of
the individual solid particles. These considerations will be developed at greater length in a
separate publication [26].

5. Concluding remarks

This work on the semi-solid state is sketchy and deals only with quite limited aspects of the
subject. Yet we feel that we have posed one central question: are there indeed two distinct
regimes depending on the actual value of the volume solid fraction at the gel onset, �g

s , with
quite different microstructural and rheological properties?

To try and get a more complete answer to that question, we need not only further viscosity
measurements, but also microstructural investigation techniques. One of these is of course
classical 2D micrography, but, as stressed e.g. in reference [20], such micrography does not
always adequately reflect the reality of 3D aggregates or networks. One new observational
technique may be fruitful: synchrotron-radiation microtomography allowing 3D investigation
by means of phase contrast of a relatively large part of the sample (around 1 mm3) with a
resolution of a few micrometres [24].

In the compact-cluster scenario, we have evaluated the maximum cluster size Rmax as a
function of shear rate γ̇ , at high shear rate. This result is in fair agreement with micrographies
available in the literature (see table 1). In the random-network scenario, our viscosity
measurement on Ag–Cu at �s = 30% and γ̇ ≈ 10−2 s−1 yields an estimated viscosity of
η = 2 × 103 Pa s. Clearly, the size and the shape of individual solid particles will affect the
crossover range, in �s and γ̇ , between the compact and open-structure regimes. But, in both
regimes, gel onset and steeply rising viscosity will occur as the solid fraction�s increases and
the shear rate γ̇ decreases.
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